Reaction of 2,6-dibenzylidenecyclohexanone with phosphorus pentachloride: triple functionalization of the isosemiquinoid system

V. A. Nikanorov, ** A. D. Rogachev, M. V. Galakhov, T. M. Shcherbina, D. V. Zagorevskii, V. I. Rozenberg, O. A. Reutov, V. V. Kaverin, and V. P. Yur'ev

^aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: +7 (095) 135 5085. E-mail: vanik@ineos. ac. ru

bJoint-Stock Company "Scientific Research and Planning Institute of Monomers,"

106A prosp. Lenina, 300026 Tula, Russian Federation.

Fax: +7 (087 2) 25 3464

The reaction of 2,6-dibenzylidenecyclohexanone with PCl_5 occurs via the sequential stages of desoxychlorination and substitutional phosphorylation to form (after oxidation, methoxylation, and hydrolysis on the surface of the chromatographic SiO_2 adsorbent) organophosphorus products of the 1-(α -chloro-, α -hydroxy-, or α -alkoxy)benzyl-2-chloro-3-(α -(dimethylphosphoryl)benzylidene)cyclohex-1-ene series.

Key words: dienones, phosphorylation, desoxychlorination, methoxylation; hydrolysis, phosphorus(v) derivatives, solid-phase functionalization on the surface of chromatographic adsorbents.

The previous study of transformations of isosemiquinoid systems (1, X = O, Y = CHPh) has shown a possibility of single (compound $2)^1$ and double (compound 3) functionalization of 2,6-dibenzylidenecyclohexanone (4) under the action of Na_2PdCl_4/Na_2CO_3 in MeOH. A nucleophile (Nu = OMe) enters the exounsaturated position accompanied by the oxidation of one or two allyl CH_2 fragments and removal of double bonds to the ring (in the latter case, the reaction is accompanied by aromatization of intermediate product 3).

On the other hand, it has previously² been shown that di- and trialkyl phosphites actively react with dienone 4 as nucleophiles by C-attack of the benzylidene atom to form phosphorane products as well as dialkyl or cyclic 2-(6-benzylidenecyclohexanone)benzyl phosphonates.

In this work, the direction of the attack of dienone 4 is found to change basically on going to electrophilic phosphorylating agent PCl₅: it is directed to the oxygen atom (cf. reactions of PCl₅ with other ketones³⁻⁷). Sub-

sequent treatment of the reaction mixture with SO₂ and MeONa and its chromatography on SiO₂ results in the triple functionalization of molecule 4 to form organophosphorus products 5—7. In addition, individual compound 8a and a mixture of compounds 8b,c (2:1 ratio) were isolated from the reaction mixture. The composition and structure of the products were confirmed by the elemental analysis and NMR, IR, and mass spectrometry data.

Formation of products 5-7 can be presented by the sequential desoxychlorination of dienone 4 to dichlorodiene, its substitutional phosphorylation, complete or partial methoxylation, and interphase hydrolysis on the SiO_2 surface.*

The characteristic general property of compounds 5—7 is the existence of two doublets of diastereotopic methoxyphosphoryl groups (A and B), multiplets of 6 protons of the central ring (1—3 ppm), singlet of the benzyl proton (6—7 ppm), and multiplet of 10 phenyl protons (7—8 ppm) in the ¹H NMR spectra. The mass spectra of compounds 5—7 contain the same peaks of the monochloro-containing ion at m/z 311/313 corresponding to the elimination of the nonphosphorylated

^{*} Compare with other examples of the use of chromatographic adsorbents for various chemical transformations of separated substances rather than for separation.^{8,9}

Scheme 1

benzyl fragment and ions of these fragments and the peaks of phosphonium ions [M-Cl]⁺ with the maximum intensities.

The study of the structure and mechanism of formation of compounds 8a—c will be published elsewhere.

Experimental

NMR spectra were recorded on Bruker WP-200SY (200 MHz) and Bruker WM-250 (250 MHz) instruments in CDCl₃. IR spectra of pure compounds and suspensions in Vaseline oil were recorded on a UR-20 instrument, and mass spectra were recorded on an AEI MS-30 mass spectrometer (70 eV). Silica gel and silica plates (Chemapol) were used for chromatography. Dienone 4 was prepared by the known procedure. PCl₅ was purified by sublimation *in vacuo*.

Reaction of 2,6-dibenzylidenecyclohexanone (4) with PCl₅. An aqueous solution of dienone 4 (0.98 g, 3.6 mmol) in 16 mL of anhydrous C_6H_6 was added dropwise to a solution of PCl₅ (4.5 g, 21.6 mmol) in 40 mL of anhydrous C_6H_6 in an argon flow with magnetic stirring for 4 h. The mixture was kept for 45 h, 3 L of SO₂ was bubbled through, and the solution was evaporated *in vacuo* at 50 °C (1 Torr). The dry residue was dissolved in anhydrous Et_2O (20 mL) and poured with stirring into a solution of MeONa prepared by dissolution of sodium

metal (1.4 g, 60 mmol) in anhydrous MeOH (90 mL). The mixture was stirred for 1.5 h at 20 °C, neutralized with an aqueous solution of NH₄Cl, and extracted with Et₂O (10×50 mL). The extract was dried over MgSO₄ and evaporated. The dry residue (0.56 g) was chromatographed (TLC) on silica gel Silpearl 029 (C₆H₆—EtOH (19:1) mixture as the eluent). The fraction with $R_{\rm f}=0.17$ was collected and repeatedly separated using a C₆H₆—Et₂O (1:1) mixture as the eluent. Product 6 ($R_{\rm f}=0.2$) was obtained. Individual compounds 5 ($R_{\rm f}=0.35$), 7 ($R_{\rm f}=0.4$), and 8a ($R_{\rm f}=0.45$) and a mixture of compounds 8b,c (2:1) ($R_{\rm f}=0.55$), which we failed to separate, were isolated by chromatography from the mixture of compounds 5 and 7 ($R_{\rm f}=0.35$ to 0.4).

1-(α-Methoxybenzyl)-2-chloro-3-(α-(dimethylphosphoryl)-benzylidene)cyclohex-1-ene (5) was obtained as light-yellow oil (8 mg, 5.2 % yield). ¹H NMR, δ: 1.45–1.78 (m, 2 H, CH₂(5), $J_{\rm a-e}=12.3$ Hz); 2.0–2.2 (m, 2 H, CH₂(4)); 2.02 (dt, 1 H, CH₂(6), $J_{\rm a-e}=17.5$ Hz, $J_{\rm 6-5}=6.0$ Hz); 2.37 (dt, 1 H, CH₂(6), $J_{\rm a-e}=17.5$ Hz, $J_{\rm 6-5}=6.5$ Hz); 3.44 (s, 3 H, MeOC); 3.48 (d, 3 H, (A)MeOP, $J_{\rm H-P}=11.0$ Hz); 3.53 (d, 3 H, (B)MeOP, $J_{\rm H-P}=10.8$ Hz); 6.74 (s, 1 H, CH(a)); 7.15–7.48 (m, 10 H, Ph). ³¹P NMR, δ: 16.5 (m, $J_{\rm P-H}=11$ Hz). Mass spectrum, m/z, ($I_{\rm rel}$ (%)): 432 [M⁺] (0.01), 397 [M–Cl] (100), 313/311 [M–PhCHOMe] (4.5+17), 121 [PhCHOMe] (11), 105 [PhCO⁺] (30), 432 [M⁺] (0.01).

1-(α-Hydroxybenzyl)-2-chloro-3-(α-(dimethylphosphoryl)-benzylidene)cyclohex-1-ene (6) was obtained from an Et₂O-C₅H₁₂ mixture after additional purification by crystallization (59 mg, 3.9 %, white crystals, m.p. 152–157 °C). Found (%): C, 62.72; H, 6.08; Cl, 9.24; P, 7.66. C₂₂H₂₄ClO₄P. Calculated (%): C, 63.08; H, 5.73; Cl, 8.48; P, 7.41. IR, v/cm⁻¹: 3300 (O-H); 1240 (P=O); 1050 (P-O). ¹H NMR, δ: 1.45–1.80 (m, 2 H, CH₂(5), J_{a-e} = 13 Hz); 1.95–2.25 (m, 3 H, CH₂(4) and CH₂(6)); 2.48 (dt, 1 H, CH₂(6), J_{a-e} = 18 Hz, J_{6-5} = 6.5 Hz); 3.44 (d, 3 H, (A)MeOP, J_{H-P} = 10.8 Hz); 3.62 (d, 3 H, (B)MeOP, J_{H-P} = 11.3 Hz); 4.73 (br.s, 1 H, OH); 6.25 (s,

1 H, CH(a)); 7.10—7.53 (m, 10 H, Ph). 31 P NMR, δ : 16.5 (m, $J_{P-H} = 11$ Hz). Mass spectrum, m/z (I_{rel} (%)): 420/418 [M⁺] (0.8), 383 [M—Cl] (100), 313/311 [M—PhC(OH)H] (7+17), 105 [PhCO⁺] (15).

1-(α-Chlorobenzyl)-2-chloro-3-(α-(dimethylphosphoryl)-benzylidene)cyclohex-1-ene (7) was obtained as a light-yellow oil (7 mg, 0.5 %). 1 H NMR, δ: 1.45—1.80 (m, 2 H, CH₂(5)), 2.02 (dt, 1 H, CH₂(6), $J_{a-e} = 17.8$ Hz; $J_{6-5} = 6.5$ Hz); 2.10 (m, 2 H, CH₂(4)); 2.40 (dt, 1 H, CH₂(6), $J_{a-e} = 17.8$ Hz, $J_{6-5} = 6.5$ Hz); 3.48 (d, 3 H, (A)MeOP, $J_{H-P} = 10.8$ Hz); 3.53 (d, 3 H, (B)MeOP, $J_{H-P} = 10.8$ Hz); 5.85 (s, 1 H, CH₄(a)); 7.15—7.52 (m, 10 H, Ph).

Compound 8a was purified by crystallization from an Et₂O-C₅H₁₂ mixture (44 mg, 2.7 %, white crystals, m.p. 155.5–157 °C). Found (%): C, 58.35; H, 5.19; Cl, 15.23; P, 6.88. C₂₂H₂₃Cl₂O₄P. Calculated (%): C, 58.29; H, 5.11; Cl, 15.64; P, 6.83. IR, ν /cm⁻¹: 1260 (P=H); 1050 (P=O). ¹H NMR, 8: 1.70–2.40 (m, 4 H, (CH₂)); 2.65–2.95 (m, 2 H, CH₂); 3.29 (s, 3 H, MeOC); 3.42 (d, 3 H, MeOP); 5.65 (s, 1 H, CH(a)); 7.20–7.63 (m, 10 H, Ph). ³¹P NMR, 8: 33.0 (q, J_{P-H} = 11 Hz). Mass spectrum, m/z (I_{rel} (%)): 452/454/456 (traces) [M⁺], 416/418 [M=HCl] (87), 415/417 [M=HCl=H] (27), 381 [M=HCl=Cl] (16), 366 [M=HCl=Cl=Me] (11), 350 [M=HCl=Cl=MeO] (68), 151 ? (80), 121 [PhCHOMe] (100), 105 [PhCO] (20), 91 [C₇H₇] (33).

A mixture of compounds 8b and 8c (2:1) was additionally purified by crystallization from an $Et_2O-C_5H_{12}$ mixture to give white crystals (54 mg, 3.3 %, m.p. 161-166 °C). Found (%): C, 58.26; H, 5.16; Cl, 15.38; P, 6.80. $C_{22}H_{22}Cl_2O_4P$. Calculated (%): C, 58.29; H, 5.11; Cl, 15.64; P, 6.83. IR, v/cm^{-1} : 1255 (P=O); 1050 (P-O). ¹H NMR, δ : compound 8b 1.55-2.40 (m, 4 H, (CH₂)₂); 2.60-2.95 (m, 2 H, CH₂); 3.20 (d, 3 H, MeOC, J=0.8 Hz); 3.53 (d.d, 3 H, MeOP, $J_{H-P}=11$ Hz, J=1.2 Hz); 5.57 (d, 1 H, CH(a), J=0.7 Hz); 7.20-7.63 (m, 10 H, Ph); compound 8c 1.55-2.40 (m, 4 H, (CH₂)); 2.60-2.95 (m, 2 H, CH₂); 3.25 (d, 3 H, MeOC, J=0.8 Hz); 3.83 (d.d, 3 H, MeOP, $J_{H-P}=11.0$ Hz, J=1.2 Hz); 5.69 (d, 1 H, CH(a), J=0.6 Hz); 7.20-7.63 (m, 10 H, Ph). ³¹P NMR, δ : compound 8b 32.1 (q, $J_{P-H}=11$ Hz); compound 8c 33.1 (q, $J_{P-H}=11$ Hz). Mass spectrum, m/z (I_{rel} (%)): 452/454/456

[M⁺] (traces), 417/419 [M—Cl] (75), 416/418 [M—HCl] (23), 382 [M—2Cl] (12), 367 [M—2Cl—Me] (14), 351 [M—2Cl—OMe] (34), 350 [M—2Cl—MeOH] (8), 151? (100), 121 [PhCHOMe] (57), 105 [PhCO] (12), 91 [C₂H₂] (12).

This work was financially supported by the International Science Foundation (Grant MHW 000) and the Russian Foundation for Basic Research (Project No. 94-03-08873).

References

- V. A. Nikanorov, V. I. Rozenberg, A. D. Rogachev, M. V. Galakhov, V. V. Kaverin, V. P. Yur'ev, and O. A. Reutov, Izv. Akad. Nauk SSSR, Ser. Khim., 1987, 2865 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 2662 (Engl. Transl.)].
- B. A. Arbuzov, V. M. Zoroastrova, G. A. Tudrii, and A. V. Fuzhenkova, *Izv. Akad. Nauk SSSR*, Ser. Khim., 1972, 2545 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1972, 21, 2473 (Engl. Transl.)].
- M. S. Newman and L. L. Wood, Jr., J. Am. Chem. Soc., 1959, 81, 4300, 6450.
- 4. J. R. Merchant and V. B. Desai, J. Chem. Soc., 1968, 499.
- S. V. Fridland and Yu. K. Malkov, in Reakisii i metody issledovaniya organicheskikh soedinenii [Reactions and Methods for Investigation of Organic Compounds], Khimiya, Moscow, 1986, 106 (in Russian).
- A. V. Fokin, A. F. Kolomiets, and V. S. Shchennikov, Zh. Obshch. Khim., 1972, 42, 801 [J. Gen. Chem. USSR, 1972, 42 (Engl. Transl.)].
- V. E. Kolbina, V. G. Rozinov, V. I. Glukhikh, and G. V. Ratovskii, Zh. Obshch. Khim., 1978, 48, 2795 [J. Gen. Chem. USSR, 1978, 48 (Engl. Transl.)].
- 8. P. Laszlo, Acc. Chem. Res., 1986, 19, 121.
- V. V. Veselovsky, A. S. Gybin, A. V. Losanova, A. M. Moiseenkov, W. A. Smit, and R. Caple, *Tetrahedron Lett.*, 1988, 29, 175.
- J. B. Bentlez, K. B. Everard, and R. J. B. Marden, J. Chem. Soc., 1949, 2959.